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FLIGHT INVESTIGATION OF THE AERODYNAMIC 

PROPERTIES OF AN OGEE WING 

By L. Stewart Rol ls ,  David G. Koenig, and 
Fred J. Drinkwater I11 
Ames Research Center 

SUMMARY 

The low-speed c h a r a c t e r i s t i c s  of a delta-wing a i r c r a f t  modified t o  an 
Ogee plan form were inves t iga ted  i n  f l i g h t  and i n  t h e  Ames 40- by 8 0 - ~ o o t  Wind 
Tunnel. The f l i g h t  r e s u l t s  showed t h e  a i r c r a f t  had good f l y i n g  q u a l i t i e s  with 
improved l a t e ra l -d i r ec t iona l  con t ro l  c h a r a c t e r i s t i c s .  The f l i g h t  charac te r i s -  
t i c s  of t h e  a i r c r a f t  were s u f f i c i e n t l y  improved t h a t  t h e  p i l o t  w a s  w i l l i ng  t o  
lower t h e  approach speed 10 knots.  

INTRODUCTION 

Supersonic t ranspor t  configurat ions t h a t  employ fixed-geometry wings of 
low aspect  r a t i o  have been found t o  provide performance competitive with t h a t  
of other  designs.  Some small-scale wind-tunnel t e s t s  ( r e f .  1) have ind ica ted  
t h a t  one va r i a t ion  of t h i s  type of wing, t h e  Ogee, exh ib i t s  b e t t e r  low-speed 
o r  landing c h a r a c t e r i s t i c s  than some o ther  plan forms of low aspect  r a t i o .  
These bene f i t s  r e s u l t  from a s t a b l e  vortex flow which i s  es tab l i shed  over t h e  
wing by the  high sweep angle a t  t h e  wing root  of t h e  Ogee p lan  form. This 
vortex system enables t h e  wing t o  develop higher l i f t  a t  angles of a t t a c k  used 
f o r  landing and take-off.  To f u l l y  document the  c h a r a c t e r i s t i c s  of t h e  Ogee 
plan form, it w a s  t e s t e d  i n  f l i g h t  and i n  a fu l l - sca l e  wind tunnel .  The spe- 
c i f i c  ob jec t ive  o f  t h e  t e s t s  w a s  t o  determine whether these  bene f i t s  of vortex 
flow are obtainable  i n  f l i g h t  and whether f l i g h t  maneuvers would destroy t h e  
vortex system so  t h a t  t h e  p i l o t  could not u t i l i z e  t h e  s t a t i c  l i f t  c a p a b i l i t i e s  
of t h e  wing. 

For t h i s  inves t iga t ion ,  t h e  d e l t a  wing of a Douglas F5D-l a i r c r a f t  was 
modified t o  incorporate an  Ogee wing plan form. This modification w a s  f irst  
t e s t e d  i n  t h e  Ames 40- by 80-Foot Wind Tunnel t o  determine t h e  s t a t i c  aerody- 
namic da ta  before  t h e  configurat ion was f l i g h t  t e s t e d .  Following t h e  tunnel  
t es t s  t h e  modifications were made fl ight-worthy and t h e  low-speed f l i g h t  char- 
a c t e r i s t i c s  w e r e  inves t iga ted .  

This repor t  descr ibes  t h e  flight-measured s t a t i c  and dynamic aerodynamic 
c h a r a c t e r i s t i c s  of t h e  t e s t  a i rp l ane  with t h e  Ogee wing. Some of t h e  r e s u l t s  
of t h e  40- by 80-foot wind tunnel  tes ts  are compared with t h e  f l igh t  da ta  
where appl icable .  



NOTATION 

drag drag coe f f i c i en t ,  - 
qs 

l i f t  l i f t  coe f f i c i en t  , - 
qs 

dynamic pressure,  lb/sq f t  

wing area, sq f t  

angle of a t t ack ,  deg 

angle of s i d e s l i p ,  deg 

elevon def lec t ion ,  deg 

rudder def lec t ion ,  deg 

p i tch ing  ve loc i ty ,  radians/sec 

r o l l i n g  ve loc i ty ,  radians/sec 

yawing ve loc i ty ,  radians/sec 

DESCRIPTION 

Test Airplane 

The a i r c r a f t  used i n  t h i s  inves t iga t ion  w a s  t h e  Douglas F5D-1, a 
single-place,  je t -propel led,  delta-wing f i g h t e r .  The highly swept d e l t a  plan 
form of t h i s  a i r c r a f t  served as a convenient base f o r  t h e  modifications 
required t o  produce t h e  Ogee plan form. A photograph of t h e  F3D-1 as modified 
f o r  these  tes t s  i s  shown i n  f igu re  1. Figure 2 presents  a two-view drawing of 
t h e  airplane;  pe r t inen t  dimensions a r e  presented i n  t a b l e  I and i n  f igu re  3. 
The plan form f o r  t h e  bas i c  F5D-l i s  shown on f igu re  2 f o r  comparison. The 
wing extension w a s  constructed of wood which w a s  a t tached t o  t h e  o r i g i n a l  wing 
with metal sheets  and g lass  f i be r  mater ia l .  

The weight of  t h e  a i r c r a f t  during these  f l i g h t s  var ied from 25,000 t o  
21,000 pounds and t h e  center  of g rav i ty  w a s  32 percent of t h e  mean aerodynamic 
chord. S t ruc tu ra l  l imi t a t ions  prevented b a l l a s t i n g  t o  a more forward center- 
of-gravity pos i t ion .  
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INSTRUMENTATION 

Recording instruments were i n s t a l l e d  t o  record simultaneously measurements 
of a i rspeed,  a l t i t u d e ,  normal and longi tudina l  acce lera t ion ,  angles of a t t a c k  
and s i d e s l i p ,  and t a i l -p ipe  t o t a l  pressure.  Control pos i t i on  transducers were 
mounted a t  t h e  cont ro l  surfaces ,  and angular turnmeters were i n s t a l l e d  t o  doc- 
ument t h e  t r im  and s t a b i l i t y  c h a r a c t e r i s t i c s  and unsteady phenomena. To mini- 
mize t h e  e r r o r s  i n  t h e  airspeed and angle-of-attack measuring systems, a boom 
10 f e e t  long w a s  mounted on t h e  nose of t h e  a i r c r a f t .  This i n s t a l l a t i o n  was 
not ca l ibra ted ,  but  a similar i n s t a l l a t i o n  used i n  t h e  t e s t s  described i n  re f -  
erence 2 indicated t h e  e r r o r s  t o  be s m a l l .  

A motion p i c tu re  camera mounted on t h e  v e r t i c a l  t a i l  photographed t h e  
wing t u f t s  and vortex p a t t e r n s .  

RESULTS AND DISCUSSION 

Longitudinal Charac te r i s t ics  

The s t a t i c  longi tudina l  aerodynamic cha rac t e r i s t i c s  of t h e  t e s t  
configuration, as measured during t h i s  f l i gh t  inves t iga t ion ,  a r e  shown i n  f ig -  
ures  4, 5 ,  and 6 i n  t h e  form of angle of a t t ack ,  drag coe f f i c i en t ,  and 
pitching-moment va r i a t ion  with l i f t  coe f f i c i en t .  
80-foot wind-tunnel da ta  a r e  p l o t t e d  on t h e  appropriate  f igu res .  
t i o n s  of angle of a t tack  and drag coe f f i c i en t  with l i f t  coe f f i c i en t  f o r  t he  
gear-up configurat ion a r e  presented i n  f igu re  4, and f o r  t h e  gear-down config- 
ura t ion  i n  f igu re  5 .  These da ta  were obtained i n  steady f l i g h t  a t  d i f f e ren t  
a i rspeeds a t  t h e  lower angles of a t t ack ,  and during continuous maneuvers with 
slowly decreasing airspeed a t  t h e  higher angles of a t t a c k .  The equations f o r  
determining l i f t  coe f f i c i en t ,  drag coe f f i c i en t ,  and t h r u s t  a r e  described i n  
reference 3. The t e s t s  t o  measure these  quan t i t i e s  were conducted a t  an a l t i -  
tude of about 10,000 f e e t .  

For comparison, t h e  40- by 
The varia- 

Pitching-moment va r i a t ions  with l i f t  coe f f i c i en t  a r e  presented i n  
f igu re  6. The f l i g h t  data were obtained from the  measured va r i a t ion  of longi- 
t u d i n a l  cont ro l  def lec t ion  with airspeed and were converted t o  p i tch ing  moment 
by use of t h e  value of con t ro l  e f fec t iveness  as measured i n  the  wind-tunnel 
t e s t s .  The data on t h i s  f i gu re  ind ica t e  t h a t  f o r  t h e  t e s t  center-of-gravity 
loca t ion  of 32 percent of t h e  mean aerodynamic chord, t h e  s t a t i c  longi tudina l  
s t a b i l i t y  was near ly  neu t r a l .  The mild i n s t a b i l i t y  shown i n  t h i s  f i gu re  a t  a 
l i f t  coe f f i c i en t  of about 0.5 w a s  a l s o  measured during t h e  wind-tunnel t e s t s  
and was apparent t o  t h e  p i l o t  during f l i g h t  t e s t s .  The magnitude of t h i s  
e f f e c t  was s m a l l  and as shown i n  f igu re  6(b) w a s  of t h e  order of lo change i n  
cont ro l  surface de f l ec t ion  and did not cause t h e  p i l o t s  t o  l i m i t  t h e  f l i g h t  
envelope of t h e  vehic le .  

F l igh t s  a t  high angles  of a t t a c k  a r e  character ized by s l i g h t  bu f fe t t i ng ,  
and although t h i s  disturbance does not increase s i g n i f i c a n t l y  as angle of 
a t t a c k  i s  increased above l 5 O ,  it i s  considered t o  ind ica t e  t h e  l imi t ing  angle 
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f o r  landing approach. The p i l o t s  repor t  t h a t  during f l i g h t  a t  high angles of 
a t tack ,  t h e  primary problem i s  con t ro l l i ng  p i t c h  a t t i t u d e ,  and t h a t  s m a l l  ele- 
vator  inputs  a r e  cont inual ly  required t o  keep t h e  a i r c r a f t  from wandering. The 
increased longi tudina l  cont ro l  a c t i v i t y  r e s u l t s  from t h e  near ly  n e u t r a l  s t a b i l -  
i t y  of t h e  a i r c r a f t  a t  t h e  center-of-gravity loca t ion  flown. The shaded area  
on f i g u r e  6(b)  a t  t h e  high angles of a t t a c k  i l lustrates  t h e  magnitude of t h i s  
cont ro l  a c t i v i t y .  

Lateral-Direct ional  Charac te r i s t ics  

The s t a t i c  d i r e c t i o n a l  s t a b i l i t y  was inves t iga ted  a t  four  a i rspeeds,  180, 
130, 120, and 100 knots, corresponding respec t ive ly  t o  angles of a t t a c k  of 7', 
12', l5', and 2 3 O ,  and t h e  r e s u l t s  a r e  presented i n  figure 7. 
speculated t h a t  nonl inear  s t a b i l i t y  c h a r a c t e r i s t i c s  might r e s u l t  i n  s i d e s l i p s  
from t h e  vortex changing loca t ion  with respec t  t o  t h e  wing leading edge. 
shown i n  f igu re  7, within t h e  s i d e s l i p  angles  which could be obtained i n  
f l i g h t , t h e  va r i a t ions  of d i f f e r e n t i a l  elevon angle and rudder angle with 
steady s i d e s l i p  angle f o r  t h e  gear-up and gear-down configurations are indi-  
cated general ly  t o  be smooth and l i n e a r  f o r  t h e  lower angles of a t t ack .  Some 
nonl inear i ty  i n  t h e  dihedral  e f f e c t  i s  becoming evident a t  t h e  t e s t  angle of 
a t t a c k  of  15' ( f i g .  7 ( b ) ) ,  but  t h e  magnitude shown d id  not evoke any c r i t i c a l  
comments from t h e  p i l o t .  

It had been 

As 

The a i r c r a f t  and cont ro l  surface motions during a rap id  rudder re lease  
maneuver from maximum l e f t  s i d e s l i p  angle of t h e  two lowest a i rspeeds a r e  pre- 
sented i n  f igu res  8 and 9.  
These data ,  and data from s imi la r  rudder r e l eases ,  have been analyzed, and t h e  
per iod and damping a r e  presented i n  f igu re  10. The da ta  on t h i s  f i gu re  show 
only a minor change i n  damping c h a r a c t e r i s t i c s  f o r  angles of a t t a c k  up t o  
approximately 24'. 

These da ta  ind ica t e  pos i t i ve  d i r ec t iona l  damping. 

The p i l o t  f e l t  t h a t  t he  d i r e c t i o n a l  s t a b i l i t y  and cont ro l  c h a r a c t e r i s t i c s  
a t  high angles of a t t a c k  w e r e  superior  to those of any delta-wing a i r c r a f t  he 
had previously flown. 
changes i n  s t a b i l i t y  and cont ro l .  

The a i r c r a f t  exhibi ted no tendency t o  develop abrupt 

Vortex Charac te r i s t ics  

The vortex system can, under centa in  atmospheric conditions,  produce 
v i s i b l e  condensation t ra i ls  over t h e  wing. Figure 11 shows t h e  vortex,  photo- 
graphed from t h e  chase a i r c r a f t  during a landing approach. It w a s  not possi-  
b l e  t o  document t h e  vortex c h a r a c t e r i s t i c s  completely e i t h e r  with the  camera 
on t h e  a i r c r a f t  o r  i n  t h e  chase a i r c r a f t ,  so  some of t h e  information about t h e  
vortex behavior was obtained from t h e  v i s u a l  observations of t h e  p i l o t s  of 
both a i r c r a f t .  The cha rac t e r i s t i c s  of t h e  vortex,  both observed and photo- 
graphed, agree with t h e  vortex behavior measured during t h e  water tunnel  t e s t s  
on an Ogee plan form described i n  reference 4 regarding the  changes due t o  
angle-of-attack and angle-of-sideslip va r i a t ions .  A s e t  of sketches of t h e  
t u f t  pa t t e rns  over t h e  wing a t  various angles of a t t ack ,  derived from photo- 
graphs taken by t h e  tail-mounted camera, a r e  presented i n  f igu re  12. 
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first th ree  sketches show t h e  increase i n  t h e  a rea  of unsteady flow as t h e  
angle of a t t a c k  changes from 7 . 5 O  t o  15' and then t o  18'. 
18O angle of a t t a c k  are included t o  show the  va r i a t ion  i n  t u f t  pa t te rns  i n  
f l i gh t  during t h e  onset of mild bu f fe t t i ng  and ind ica t e  an increase i n  t h e  
area of unsteady flow i n  f igu re  12(d) .  
f i gu res  l2(c) and 12(d) occurred i n  about 0.3 second and were cont inual ly  
changing, it was reasoned t h a t  flow changes over t h e  outboard sect ion of t h e  
wing might be one of t h e  causes f o r  t h e  b u f f e t t i n g  disturbance previously 
noted a t  angles of a t t a c k  g rea t e r  than  1-5'. 
t h i s  disturbance i s  caused by t h e  e f f e c t  of t h e  vortex flow on the  v e r t i c a l  
t a i l .  The p i l o t  of  t h e  chase a i r c r a f t  observed t h a t  during f l i g h t s  a t  these  
angles t h e  vortex appears t o  be high o f f  t he  wing and flows t o  an area near 
t h e  t a i l .  

The two sketches a t  

Since changes i n  t u f t  pa t te rns  between 

It i s  a l s o  possible  t h a t  some of 

Comparison With Other Data 

A comparison of t h e  c h a r a c t e r i s t i c s  of t h e  Ogee wing with the  
c h a r a c t e r i s t i c s  of t he  d e l t a  wing on the  bas ic  F 5 S l  a i r c r a f t  should ind ica te  
t h e  effect iveness  of t h e  vortex flow i n  maintaining favorable flow pa t te rns  
over t h e  wing a t  high angles of a t tack .  
f o r  t h i s  a i rspeed range. It i s  therefore  necessary t o  r e l y  on the  opinion of 
t h e  p i l o t s  as t o  how t h e  c h a r a c t e r i s t i c s  of t h e  a i r c r a f t  with the  Ogee wing 
compare with those of t he  bas ic  a i r c r a f t .  I n  carr ier- type landings, t h e  
landing-approach speed of t h e  bas i c  a i r c r a f t  i s  l imi t ed  by t h e  de te r iora t ion  
i n  l a t e ra l -d i r ec t iona l  cha rac t e r i s t i c s ,  evidenced l a r g e l y  by low damping and 
high yaw angles induced by l a t e ra l - con t ro l  inputs .  The p i l o t s  f e l t  t h a t  t h e  
l a t e ra l -d i r ec t iona l  c h a r a c t e r i s t i c s  were much improved f o r  t h e  a i r c r a f t  with 
t h e  Ogee wing and permitted a reduction i n  t h e  landing-approach speed of 
approximately 10 knots.  
i s  l imi ted  by poor f l igh t -pa th  cont ro l  caused by longi tudina l  i n s t a b i l i t y  and 
by t h e  rap id  increase i n  t h e  power required with decreasing f l i g h t  speed. 

However, no f l i g h t  da ta  a r e  ava i lab le  

The approach speed of t h e  a i r c r a f t  with the  Ogee wing 

CONCLUDING REMARKS 

Fl igh t  t e s t s  of a delta-wing a i r c r a f t  modified t o  incorporate an Ogee 
wing plan form indicated t h a t  over t h e  range of angles of a t t a c k  and s i d e s l i p  
flown, t he  vortex produced s t a b l e  l i f t  c h a r a c t e r i s t i c s .  I n  the  opinion of t h e  
p i l o t  t h e  modified a i r c r a f t  has improved l a t e r a l - d i r e c t i o n a l  cont ro l  and damp- 
ing  cha rac t e r i s t i c s .  
slight lateral  unsteadiness w a s  noted by t h e  p i l o t  and, although it did not 
increase s i g n i f i c a n t l y  a t  higher angles of a t t ack ,  it w a s  considered an indi-  
ca t ion  of t h e  l imi t ing  angle f o r  landing approach. The l a t e ra l -d i r ec t iona l  
f l y i n g  q u a l i t i e s  of t h e  a i r c r a f t  with t h e  Ogee wing were s u f f i c i e n t l y  improved 
t o  permit a 10-knot reduct ion i n  approach speed. 

A t  high angles of a t t ack ,  g rea t e r  than  about l5', a 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  Calif . ,  Sept.  2, 1965 
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TABU 1.- DIMENSIONAL DA,TA FOR THE F5D-1 AIRPLANE WITH AN OGZE PLAN-FORM WING 

- 

Wing 
Area, sq f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  661 
S p a n , f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33.5 
A s p e c t r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.70 
Mean aerodynamic chord, f t  . . . . . . . . . . . . . . . . . . . . .  22.59 
Incidence a t  root ,  deg . . . . . . . . . . . . . . . . . . . . . . .  0 
Geometric t w i s t ,  deg . . . . . . . . . . . . . . . . . . . . . . . .  0 

Leading edge a t  root ,  deg . . . . . . . . . . . . . . . . . . . . .  77 
Leading edge, minimum, deg . . . . . . . . . . . . . . . . . . . .  33.8 

Area af t  of  hinge l i n e  (one s i d e ) ,  sq f t  . . . . . . . . . . . . . .  24.26 
S p a n , f t . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.79 

Span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.58 

Area, sq f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69.87 
Span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.46 
Sweep of 25-percent chord l i n e ,  deg . . . . . . . . . . . . . . . . .  48.22 

Area a f t  of hinge l i n e ,  sq f t  . . . . . . . . . . . . . . . . . . . .  9 -25 
S p a n , f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2s 

Length, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46.83 
M a x i m u m  depth, f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  4.75 
M a x i m u m  width, f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  4.7; 

Sweep 

Elevon 

Inboard elevon (trimmer) 
Area a f t  of hinge l i n e  (one s i d e ) ,  sq f t  . . . . . . . . . . . . . .  9.04 

Ver t i ca l  t a i l  

Rudder 

Fuselage 

~. 
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A-32660-4 
Figure 1.- Photograph of the  t e s t  a i r c r a f t  i n  f l i g h t .  
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Basic F5D-I  

- - _- . . -  

.I 
Figure 2.- Two-view sketch of t e s t  a i r p l a n e .  
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Engine inlet (ref.) 

Wing leading edge-duct intersection 
x = 5 3  
y = 103.5 

Inf lect ion point 

b 
xi 

-- 

Section A-A 

Leading edge 

.3226 
Y = 475.50 - 100 [ 2290 - 12.771 

x -21 

Tra i l ing edge 

y = 426.80 + , 3 0 3 2 2 ~  

Figure 3 .- Detai ls  of Ogee plan form. 
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Figure 4.- Variation of angle of a t t ack  and drag coef f ic ien t  with l i f t  coeff ic ient ;  gear up. 



L D  

Figure 5.- Variation of angle of attack and drag coefficient with lift coefficient; gear down. 



FI  ight test 

4 0  X 80 wind tunnel ---- 
I .o 
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0 
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UP 
0 - .02 -.04 0 

P i t c h i n g -  moment coeff ic ient  
about .32 mean aerodynamic 
chord. 

E levon d e f l e c t i o n ,  deg 

(a) Pitching moment. (b) Elevon angle. 

Figure 6.- Pitching-moment characteristics in landing-approach condition. 
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Figure 7.-  Variat ion of  rudder and d i f f e r e n t i a l  elevon angles with steady 
s i d e s l i p .  
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Figure 7 .- Concluded. 
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Figure 8.- Time h i s to ry  of a r e tu rn  from maximum right sidesli-p at 120 knots .  

17 



Figure 9.- 

18 

Time h i s to ry  of a r e t u r n  from maximum right sideslip a t  100 knots.  
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a, deg 

Figure 10.- Directional damping characteristics as a function of angle of 
attack. 
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Figure 11.- Photograph o f  the  v i s ib l e  vortex system. A-33500-2 



I Steady tu f t  
d Unsteady tuf t  
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( c )  a = 18" (d)  a = 18" 

Figure 12.- Tuft patterns at various angles of attack, zero sideslip. 
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conducted so as t o  contribute . . . to the expansjon of human knowl- 
edge of phenomena in the atmosphere and space. The Administsation 
shall provide for  the widest practicable and appropriate dissemination 
of information concerning its actisities and the results thereof .” 
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and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publications may  be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

N AT1 0 N A L A E RO N A UTI CS A N  D SPACE A D M  I N I STRATI 0 N 
Washington, D.C. PO546 


